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Introduction 

1. Motivation - Typical Case Study 
2. Important Terminology 

a. Trends 
b. Seasonality 
c. Stationary Process 
d. White Noise 
e. Covariance and Autocovariance 
f. Autocorrelation and ACF 
g. PACF 
h. General Linear Process (Ѱ and Π weights)  

3. Major Models used their ACF and PACF plots 
a. AR Models 
b. MA Models 
c. ARMA Models 
d. ARIMA Models 

4. Implementation  
a. Model Identification 
b. Implementation on our Case Study 
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Motivation 

Time series models are useful while working with serially correlated data. Most business 
houses work on time series data to analyze sales number (for the next year), website 
traffic, competition position and much more.  

Some other  important application spheres include: 

1. Economics: monthly data for unemployment, hospital admissions, etc. 
2. Finance - daily exchange rate, a share price, etc.  
3. Environmental - daily rainfall, air quality readings.  
4. Medicine - e.g., ECG brain wave activity every 2​−8​ secs 

We will consider in detail the the AirPassengers dataset while discussing time series in 
detail. You can find the dataset here: 
(​https://www.kaggle.com/rakannimer/air-passengers/data​) 

 

It is a simple dataset with just two columns and we will be working on Python all the 
while. As evident from the figure below, the data gives information about the number of 
passengers travelling each month.  

This is how the data head looks like: 
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The trends look like: 

 

 

We see a definite rise in the overall passenger traffic as well as a seasonal nature 
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Few Important Terms 

● Trends:​ ​Long term movement of mean  

● Seasonality:​ ​Cyclic fluctuations in calendar.  
 
For example, there is seasonality in the monthly data, where high values always 
tend to occur in some particular months and low values always tend to occur in 
other particular months. In case, S = 12 (months per year) is the span of the 
periodic seasonal behavior. For quarterly data, S = 4 time periods per year. 
 

● Stochastic Process:  

 A ​stochastic​​ or ​random process​​ is a mathematical object usually defined as a 
collection of random variables. 

● Stationary Process  

○ Strictly Stationary​: ​Sequence {​X​t​ ,t​} is strictly stationary, if: 

                 

           for all sets of points t and integer h 

○ Weakly Stationary:​  A process is weakly stationary or second order 
stationary if: 

 

Where, E is the expectation function 
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Basically, the mean and variance should not be a function of time 
(property of constant variance is also called homoscedasticity), i.e.  
In the first figure, the mean of the series is a function of time while in the 
second series the variance of the series changes over time i.e. the width 
between peaks and troughs. 

 

 

 

● White Noise:​ ​A sequence of independent random variables with zero mean and 
variance 𝝈​2 ​is called white noise. It is a weakly stationary series with 𝜸 ​0​=𝝈 ​2 ​ and 
𝜸 ​k​=0 (k≄0) 

● Co-Variance: ​A statistical measure of variation or association  of one variable 
X with the other, Y 
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Where E[X] is the expectation of X, also known as mean of random variable  X 

cov(X,Y) is also denoted by  𝝈(X,Y) 

The above equation can be simplified using linearity property of Expectation 
function 

 

 

Also, 

        

 

● Autocovariance:​ ​Autocovariance is the covariance between a stochastic 
process at different times. 

       

 

● Autocorrelation: ​The autocorrelation function is defined as ratio of 𝜸(​k​) and 
𝜸(0) 
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● Autocorrelation and Autocovariance Function: 

The autocovariance function of a weakly stationary process is a capture of variation of 
autocovariance with k. It can be expressed as ​ ​f​​(k)​=​ 𝜸(k) ​. ​For example, the 
autocovariance function of a stochastic process  

   

Where ​u​t​ is the white noise  ​(WN(0,𝝈​2​)).    

 The autocovariance function for the above process is given by:  

                         

● Note the autocovariance cuts off after lag 1  
● Autocorrelation function can be similarly modelled , ⲣ(k) is used instead of 𝜸(​k ​)  

 

❖ Autocovariance Matrix 

                                 

❖ Autocorrelation Matrix 
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● Partial Autocorrelation Function (PACF): 

Partial correlation​​ is different from variance in terms that it is a measure of 
association between two random variables, with the effect of one set of contributing 
variables removed. 

For example, we have data on the consumption, income, and wealth of various 
individuals and we wish to see if there is a relationship between consumption and 
income, failing to control for wealth. When we compute a correlation coefficient between 
consumption and income, the result would be misleading. Since income might be 
numerically related to wealth, which in turn might be numerically related to consumption; 
a measured correlation between consumption and income might actually be 
contaminated by these other correlations. The use of a partial correlation helps avoid 
this problem. 

● Partial Autocorrelation is the partial correlation of a time series with its own 
lagged values, controlling for the values of the time series at all shorter lags. 

 The Partial Autocorrelation function(PACF) plays an important role in identifying the lag 
of an autoregressive process. ​The use of this function was introduced as part of the 
Box–Jenkins​ approach to time series modelling. 

Going into the mathematical insights of PACF is out of the scope for this text. Only the 
plots of PACF are useful in understanding the order of AR(p) and ARMA(p,q) process. 
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● General Linear Process: 

 

         Ѱ  weights  

It is a representation of a stochastic process as the output from a linear filter, 
whose input is white noise a​t​: 

                        

where,                                         

It allows us to represent the process as a weighted sum of present and past 
values of the white noise process ​a​t ​. ​The following properties of the white noise 
should be noted:   

     

Π weights 

An alternative way of modelling a linear process would be by representing the 
current deviation as a weighted sum of the previous deviations z​t-1​,z​t-2​,z​t-3​…. 

                                       

Relation between Ѱ and Π weights is given by 
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Where B is the backshift operator 

       

AR Models- AR(p) Process 

An autoregressive process of order p is represented as 

               

 

Where B is the backshift operator and 𝝓 ​1​,𝝓​2​,𝝓 ​3​,𝝓​4​,𝝓 ​5​…. are adjustable parameters. 

 

Mathematically, we compare an AR(p) process with a general linear process to check 
stationarity, by imposing the condition:  

  Σ​∞​ᴪ​i​< ∞            ​(summation zero to infinity) 

 

For an AR(1) process the maths works like: 

 

Which can written as: 
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On comparing with general linear process, 

                                        

 

For​ ​ᴪ(B) ​to converge , we have  

   

 

● The autocorrelation function of an AR(p) Process dies down eventually 
● The PACF function for an AR(p) Process cuts off 
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Autocorrelation Plot: 

 

 

Partial Autocorrelation Plot: 

The partial autocorrelation function is represented by​ 𝝓 ​kk ​ k=1,2,3…. 

For an AR process solving for k=1,2,3.. We obtain 
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● F​or an AR(p) process ​𝝓 ​kk ​=0 for​ k>p​​ and non zero for​ k ≤ p 
● Basically the PACF cuts off after lag p 

 

 

The above figure is a plot of an estimated PACF with two standard error limits assuming 
the model is AR(1). Since E[​𝝓 ​22​] is also significant, there is a possibility of the process 
being AR(2). We can make further investigations to clear our doubts. 

MA(q) Models : Moving Average Models 

An MA(q) process looks like: 
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Since​ θ​B​ is a finite set, on comparing an MA process to a general linear process we 
always have the summation of ​ᴪ(B) ​converging.  Hence an MA process is always 
stationary. We have to work to establish invertibility of an MA process​. 

 

● The autocorrelation function of an MA(q) process cuts off after q 

 
● While the PACF dies down gradually 

 

Autocorrelation Function: 

Consider an MA(1) process with ​θ​1​=0.7 

  

The theoretical and practical ACF plot might look dissimilar but the trend follows an 
overall similar pattern as PACF for an AR process. 

 

 

Theoretical Practical 
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For an MA(2) process 

 

 

 

 

 

 

Partial Autocorrelation Function: 

● PACF for an MA(q) process gradually tapers towards zero in some manner 

Consider an MA(1) process                      

The PACF plot looks like 
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ARMA(p,q) Process: AutoRegressive Moving Average 
 

It is just the linear combination of the above two processes studied. 

General Equation: 

                         

Or 

 

 

Or 

                                                  

29 



 

 

 

ARIMA(p,d,q) Models- Autoregressive Integrated Moving 
Average Models 
It is just a generalization of the ARMA models. ​ ARIMA models are applied in some 
cases where data shows evidence of non-stationarity, where an initial differencing step 
(corresponding to the "integrated"part of the model) can be applied one or more times to 
eliminate the non-stationarity. 

Non- seasonal ARIMA Models: 

 

If we combine differencing with autoregression and a moving average model, we obtain 
a non-seasonal ARIMA model. ARIMA is an acronym for AutoRegressive Integrated 
Moving Average model (“integration” in this context is the reverse of differencing). The 
full model can be written as 

 

 

where ​y​t​ ​is the differenced series (it may have been differenced more than once).  
The “predictors” on the right hand side include both lagged values of ​y​t  ​ ​and lagged 
errors. We call this an ​ARIMA(​​p​,​d​,​q​) model​​, where 
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Implementation and Model Identification: 
 

Remember: The trends of ACF and PACF would play a key role in choosing a model 

 

Model ACF PACF 

AR(p) Tails off gradually Cuts of after lag p 

MA(q) Cuts of after lag q Tails off gradually 

ARMA(p,q) Tails off gradually Tails off gradually 
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Implementation on our Case Study: 

 

1)  Visualizing and deriving Inferences 

The above is a data visualization from the AirPassengers dataset, capturing their travel 
frequencies against time. Such a plot clearly demonstrates seasonality and 
non-stationarity(since the variance or the width of the peaks keep on increasing with 
time). 
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The data seems to have a trend and seasonality. We will try to break it down into four 
components. To make our lives easier, Python has a library called statsmodels. It would 
break the data down into an additive model or a multiplicative model. 

Additive Model: 

It works on the principle where the models looks like: 
y(t)=Level+Trend+Seasonality+Noise 

● An additive model is linear where changes over time are consistently made by 
the same amount 

● A linear trend is a straight line 
● A linear seasonality has the same frequency (width of cycles) and amplitude 

(height of cycles) 

Multiplicative Model: 

y(t)=Level*Trend*Seasonality*Noise 

 
● A multiplicative model is nonlinear, such as quadratic or exponential. Changes 

increase or decrease over time. 

● A nonlinear trend is a curved line. 

● A non-linear seasonality has an increasing or decreasing frequency and/or 

amplitude over time. 

From the above plot we can see that it is clearly a Multiplicative model, as it is non 
linear, changing nearly as a power of 2. 
 

Real-world problems are messy and noisy. There may be additive and multiplicative 
components. There may be an increasing trend followed by a decreasing trend. There 
may be non-repeating cycles mixed in with the repeating seasonality components. 

Nevertheless, these abstract models provide a simple framework that you can use to 
analyze your data and explore ways to think about and forecast your problem. 
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1. A clear inference is the seasonality is at least 12 months. 

2. The year on year trend show the number of passengers are increasing without 

fail. 

3. July and August have a significantly higher seasonal passenger traffic compared 

to other months. 
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2. Stationarize the series 
 

When modeling, there are assumptions that the time series we are dealing with is 
stationary. In reality, this assumption can be easily violated in time series by the addition 
of a trend, seasonality, and other time-dependent structures. 

Once we know the patterns, trends, cycles and seasonality , we can check if the series 
is stationary or not. Dickey – Fuller is a popular test to check the same. You can read up 
on the maths behind Dickey Fuller test; for now we will cover implementation and 
inferences 

 

Augmented Dickey Fuller Test: 
 

Statistical tests make strong assumptions about your data. They can only be used to 
inform the degree to which a null hypothesis can be accepted or rejected. The result 
must be interpreted for a given problem to be meaningful. 

Nevertheless, they can provide a quick check and confirmatory evidence that your time 
series is stationary or non-stationary. 

The Augmented Dickey-Fuller test is a type of statistical test called a unit root test. 

The intuition behind a unit root test is that it determines how strongly a time series is 
defined by a trend. 

There are a number of unit root tests and the Augmented Dickey-Fuller is one of the 
more widely used . It uses an autoregressive model and optimizes an information 
criterion across multiple different lag values. 

The null hypothesis of the test is that the time series can be represented by a unit root, 
that it is not stationary (has some time-dependent structure). The alternate hypothesis 
(rejecting the null hypothesis) is that the time series is stationary. 

● Null Hypothesis (H0)​​: If accepted, it suggests that the time series has a unit 
root, meaning it is non-stationary. It has some time dependent structure. 
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● Alternate Hypothesis (H1)​​: The null hypothesis is rejected; it suggests the time 
series does not have a unit root, meaning it is stationary. It does not have a 
time-dependent structure. 

We interpret this result using the p-value from the test. A p-value below a threshold 
(such as 5% or 1%) suggests we reject the null hypothesis (stationary), otherwise a 
p-value above the threshold suggests we accept the null hypothesis (non-stationary). 

● p-value > 0.05​​: Accept the null hypothesis (H0), the data has a unit root and is 
non-stationary. 

● p-value <= 0.05​​: Reject the null hypothesis (H0), the data does not have a unit 
root and is stationary. 

Below is an example of calculating the Augmented Dickey-Fuller test, its implementation 
on our dataset: 

 

Since the ​p-value > 0.05 ​​we accept the null hypothesis, hence the series is 
non-stationary 

 

This doesn’t ends here! Now we know that the series is non-stationary, we have to use 
some techniques to make it stationary 

There are three commonly used techniques to make a time series stationary: 

1. Detrending : Here, we simply remove the trend component from the time series.             
For instance, the equation of my time series is: 
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x(t) = (mean + trend * t) + error 

We’ll simply remove the part in the parentheses and build a model for the rest. 

  

2. ​Differencing​​ : This is the commonly used technique to remove non-stationarity. Here 
we try to model the differences of the terms and not the actual term. For instance, 

x(t) – x(t-1) = ARMA (p ,  q) 

This differencing is called as the Integration part in AR(I)MA. Now, we have three              
parameters 

p : AR 

d : I 

q : MA 

3. ​Seasonality​​ : Seasonality can easily be incorporated in the ARIMA model directly. 
More on this has been discussed in the applications part below. 

Before implementing any of above processes on our data we should address the issue 
of unequal variances(​dealing with trends​​). We deal with this using log operation on the 
series. Trends can be dealt by other mathematical operations like sq. root, cube root, 
log etc. 

Then we resort to differencing to deal with seasonality. 
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As after our operations, we have brought down the p-value to a lesser level, though not 
0.05, we can reject our null hypothesis with certain confidence interval(would need to 
consult the p-value table for exact confidence interval), hence the series is now more 
stationary. 
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Finding Optimal Parameters:  

The parameters p,d,q can be found using  ACF and PACF plots. In addition to this 
approach if both ACF and PACF decrease gradually, it indicates that we need to make 
the time series stationary and we introduce a value to “d”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plotting ACF 
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Plotting PACF 
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The ACF and PACF plots clearly don’t follow the standard plots for AR and MA models. 
Hence the model best fitting here would most probably be an ARIMA model. 

The next question is to determine the order of AR and MA involved. 

1. p​​ – The lag value where the ​PACF​​ chart crosses the upper confidence interval 
for the first time. If you notice closely, in this case p=2. 

2. q​​ – The lag value where the ​ACF​​ chart crosses the upper confidence interval for 
the first time. If you notice closely, in this case q=2. 

Building Model 

We would consider the RSS (Residual Sum of Squares) of all the 3 possibilities, i.e.: 

1. ARIMA(2,1,0) 

29 



 

 

2. ARIMA(0,1,2) 
3. ARIMA(2,1,2) 

ARIMA(2,1,0) 

 

*disp controls the convergence information printed, if disp<0 no such info is printed. It is 
positive/true by default 

 

 

 ​ARIMA(0,1,2): 
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ARIMA(2,1,2): 
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Evidently among the three models, ARIMA(2,1,2) gives the minimum RSS and 
hence is most suitable 
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Making Predictions: 

We need to make sure that we undo all the operations we did on the series to remove 
trends and seasonality. The RSS on our modified series and the original might vary, but 
we can’t help that! 

 
 

Finally we can check the RSS on our original data. Go ahead see how well does 
your data fit! 
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